Get Connected!

Come and join our community. Expand your network and get to know new people!

Dave Fisher created a new topic ' Blue oily drip on floor' in the forum. 3 days ago

With my 1981 P210 I am seeing a small oily stain on the ground beside the normal discharge from the crankcase vent tube.This only appears after several hours on the ground after a flight. It is not evident when traveling on a fuel stop etc. There is no evidence the belly. We have inspected for a fuel leak etc. and nothing found. It appears to be coming from a small vent tube beside the crankcase vent. Has anybody else experienced this and resolved it, or needs to resolve or not? Any related information would be appreciated. Thanks in advance.



Kent Dellenbusch replied to the topic 'Difference in Garmin autopilots' in the forum. 3 days ago

Let me ask.


Ed Fogle replied to the topic 'Difference in Garmin autopilots' in the forum. 3 days ago

Thanks so much Mikayla. That’s good info. I still wonder why they are working on an interface between the 600 and Aspens but not the 500 which is approved for my aircraft and much less expensive.


Hello again folks! It’s been a while, but I’m back with another installment of “One System at a Time”, my ongoing reviews of each system in my 1980 Cessna TR182. This time around, I’m covering the electrical system. I’m writing from the perspective of an owner, I’m not an A&P, so I won’t go into A&P levels of detail.

Most aircraft, at least the GA Cessna types that most of us fly, have an electrical system with three primary components; an alternator / generator to generate power, a battery to store and discharge power and an electrical bus to distribute power.

There are a few other components to monitor the electrical system health, like a voltmeter to monitor the voltage and ammeter for amperage. Voltage regulators keep the voltage steady. Fuses and switches isolate or make things work, like the master switch, avionics power switch and circuit breakers. …but for the most part that is a basic aircraft electrical system. There are larger more complicated types with multiple primary busses, backup alternators, backup batteries, isolators and other complicated sounding bits, but most are just a rif or duplication of this basic concept.

The 1980 TR182 Electrical System Described
The electrical system of the TR182 is fairly simple by most standards. Power is provided by an engine-driven 60-amp alternator and a 24 volt battery located in the tailcone aft of the baggage compartment wall, but accessible through a side panel on the right empennage of the aircraft. The battery in 1979 and 1978 aircraft was located on the right side of the firewall, though I have seen some aircraft with the battery relocated in the tailcone. This has a couple of benefits. 1) Getting out of the hot and spicy engine compartment 2) Shifting the CG aft in an aircraft which tends to be nose heavy.

The aircraft is equipped with two buses. A primary bus bar and an avionics bus bar. The primary bus is powered anytime the master switch is turned on. The avionics bus is powered via the avionics power switch, located on a separate panel on the left wall of the cockpit.

The master power switch is a common split-rocker type switch labeled MASTER. The left half is labeled ALT and controls the alternator while the right half is labeled BAT and controls all electrical power to the airplane. Both are typically used simultaneously, though it is possible to enable just the BAT side to check equipment on the ground or remove alternator power from the electrical system. When this is done, the entire electrical load is placed on the battery. Pilots should be aware that If left in this state for too long, it is possible to reduce battery power enough to remove power from the alternator field, and prevent alternator restart.

Avionics Power is drawn from the primary bus to the avionics bus via the avionics power switch, a single-rocker switch labeled AVN PWR. This switch also operates as a circuit breaker and will automatically move to the off position if an electrical malfunction occurs and causes the circuit breaker to open. If this does happen, you should let it cool for a couple of minutes before resetting. If it happens again, the POH indicates, the switch should not be reset a second time and should be left in the OFF position.

The stock aircraft is equipped with an ammeter which gives an indication of charge or discharge. In normal operations, after the aircraft has been running for a bit, this gauge will typically settle down and remain relatively close to zero after the battery has been recharged. In the event of an alternator failure, the gauge will indicate well on the discharge side of the gauge.
My aircraft has had this gauge removed and is equipped with a JPI EDM930. This is a certified primary instrument and allows for removal of all of the analog engine and systems monitoring gauges. For me, the amps typically settle down to between +/- 2 Amps after recharging the battery after start.

My 1980 aircraft is equipped with a combination alternator regulator high-low voltage control unit mounted on the firewall. Typical 182s are also equipped with a red LOW VOLTAGE warning light on the right side of the instrument panel, which illuminates in the event of an under-voltage condition. This is removed with the installation of a certified JPI unit.

Over-voltages are handled by automatic removal of the field current from the alternator. This takes the alternator out of service and will indicate to the pilot via a discharge reading on the ammeter and eventually, illumination of the low-voltage light. You can reset the alternator by toggling the ALT side of the master switch, but if the condition reoccurs, the flight should be terminated as soon as practicable.

Most factory circuits breakers are of the “push to reset” type, though most aircraft which have had remodels of the panel have switched to the “push-pull” type of breaker. (At least the ones I have had the opportunity to take a look at.) The landing gear circuit is always a push-pull type as this circuit needs to be deactivated in many emergency gear scenarios.

On the list of traditional left-overs, the aircraft came from the factory equipped with one of those old-school push to light, cigar lighters. Anecdotally, when I asked my son about this, he didn’t know what it was. When I removed the lighter portion, he quickly identified it as a cell phone charging port…. “One of the old type.” Weirdly, this cigar lighter is protected by a circuit breaker on the BACK of the lighter and an in-line fuse. Both are quick fixes for these receptacles, which often seem to be OTS.

The TR is also equipped with a Ground Service Plug Receptacle. I’m told this was an option, but I’ve yet to come across a TR without it, in the same way I’ve never seen one without the right side controls, which were apparently an option in the earlier models. This receptacle powers the main bus when plugged it, without powering on the master switch. I tend to use this when updating avionics.

The electrical systems of these aircraft are generally trouble free. A perusal of Aviation Maintenance Alerts and Special Airworthiness Information Bulletins indicate the occasional issue caused by rubs/shorts, alternator issues, which fall primarily into two categories, failed alternators and runaway alternators, neither the fault of the electrical system design, and popping circuit breakers typically caused by shorts. All which can be found in various smatterings across the aging GA fleet. From an operator maintenance standpoint, there just isn’t much if anything to do to maintain the system.

PILOT NOTE: As noted in previous write-ups; I don’t profess to be a maintenance research expert. In fact, one of the main reasons I started writing these articles was that I was struggling to find all of the places that service, maintenance, safety data, etc are maintained for our aircraft. It appears the FAA is starting to consolidate these things into DRS but even that system appears incomplete (Better, but incomplete).

My Personal Thoughts and Pending Modifications:
What I have found most irritating about the electrical system for the TR182, is the total lack of STCd backup alternator systems for the aircraft. For an aircraft with such solid performance in speed and carrying capacity, not having this backup system as an option is an irritation.

B&C if you’re reading this, an STC including the TR182 on the AML for the B&C 410-2 would be nice!

You can acquire a backup alternator in the form of a B&C 410-2 from B&C Specialty Products along with a clocking adapter (to ensure clearance of the alternator from the oil filter. To have it installed, you will need to have removed the vacuum system from the aircraft, pretty common with glass panel updates these days. This frees up the engine driven pad needed for the alternator.

Adding a backup alternator to the TR182 will require an FAA field approval as of today. It’s been approved quite a number of times in the past and as far as field approvals go, it should be on the list of easier-to-get ones, though your mileage may vary based upon your regional field office.

PILOT NOTE: It’s worth noting for those TR182 flappers who want to finally be rid of that dual-mag and install an electro-air dual electronic ignition system (Now STC’d for this aircraft), you will need a backup alternator or backup battery. For your effort, you will have a backup alternator (or battery) and dual, independent electronic ignition systems in your aircraft. For those of us who fly IMC and cross country quite a bit, these two modifications represent the removal of two single points of failure in the aircraft and are a huge step up in safety margins for an aircraft with long legs and solid speed up in the mid-teens.

The B&C unit can crank out 20 Amps continuously at 2300 RPMs, more than enough Amps to carry most everything in the aircraft especially if you’ve made the shift to LED based lighting and have reasonably new avionics. You can burst past 20 amps for a short period of time. Long enough to get the gear down or cycle the pitot heat without unloading the electrical system in IMC.

I’m in the process of making both of these modifications to my aircraft now and the completion of those modifications will be the subject of a future post.

The Bottom Line:
The electrical system of the TR182 is simple and relatively trouble free. With a little effort, you can improve it by adding a backup alternator.

PILOT NOTE: When speaking with a couple area shops on the topic of electrical systems, they indicated that often old avionics harnesses are not removed from the aircraft during upgrades (at the request of owners who don’t want to pay for removal). This makes electrical system issues difficult to track down and trace. On a related note; During my recent panel upgrade, my avionics shop removed more than 30lbs of old harnesses from behind the panel. That represented a huge number of additional chaff points and potential points of confusion. I also gained some of that weight back in useful load!

About Nathan:
Nathan is an Engineer, Pilot and ex-Air Traffic Controller who currently flies a TR182 and DA42 Twin regularly. He began flying in 1989 and carries Private, Instrument Rating, Multi-Engine and Multi-Instrument ratings. He currently averages 300-400 hours a year in these aircraft and enjoys flying with his family throughout the United States. His TR182 flying started in 2021 and the article you are reading is a part of his attempt to learn about and understand the systems on his aircraft. If you have constructive thoughts, feel that important perspectives were missed, or critical information was left out, please message or comment.


Kent Dellenbusch replied to the topic 'Difference in Garmin autopilots' in the forum. 3 days ago

Hi Ed. I have received a reply from Mikayla at GARMIN. I hope this helps.

Hi Kent,

I apologize for the delay on getting back to you about this. I have included a detailed description below of the autopilots. Feel free to post what you would like on the forum to answer this question.

Engineering Differences:

The GFC 500 and GFC 600 use different mode controllers – the GFC 500 uses the GMC 507, whereas the GFC 600 uses the GMC 605 which has a built-in annunciator panel
The GFC 500 uses the GSA 28 autopilot servo, whereas the GFC 600 uses the larger GSA 87 servo since the GFC 600 is intended for heavier aircraft
The GFC 500 relies on a Garmin AHRS source from the G3X Touch, G5, or GI 275 whereas the GFC 600 can use AHRS information from a non-Garmin. The full list of compatible third-party attitude and heading sources can be found here à
The GFC 500 uses the Garmin AHRS source as the annunciator panel for the autopilot, whereas the GFC 600 sometimes needs to use an external autopilot annunciator panel for legality reasons (if the GMC 605 is placed out of primary view of the pilot)

To answer the other questions from the forum post directly:

There is not one autopilot that is superior to the other – they both have the same features and functionality
If trying to decide between the GFC 500 and the GFC 600 autopilot for your airplane, your airplane likely falls under the GFC 500 or GFC 600 STC, but not both. Only the Cessna 182 and Beechcraft A36 Bonanza are approved for BOTH autopilots – all other aircraft models are only approved for the GFC 500 OR the GFC 600, but not both.

For future requests like this, I am the one to handle editorial content/questions like this whereas Sydney manages paid content! I’m always happy to help! Let me know if you need anything else.


Mikayla Minnick
Public Relations Specialist
Garmin International


Phillip Walker replied to the topic 'fuel level indicator for 1962 Cessna 175C' in the forum. 6 days ago

Hi Steve

Measurements in tail dragger on standard tires (in metric):

0 Lts - 29mm (includes the 19lts of unusable fuel)
20 Lts - 62mm
40 Lts - 95mm
60 Lts - 132mm

Unfortunately in doing the latest weight and balance they did not give me a "full to the brim" measurement of capacity (very annoying), I should be able to determine that over the next month or so and will provide.

If anyone wants a copy of either of my two sticks (conventional/tail dragger)- they can contact who produce an awesome product (no, I am not on commission!) and should be able to mail to the US.

However I suggest before using my measurements they carve the appropriate measurements into the piece of dowel and check it over a few refuels. I haven't verified the second stick yet against my JPI EDM 730 (which is very accurate) but will do over the next few weeks.




STEVE ELLS replied to the topic 'fuel level indicator for 1962 Cessna 175C' in the forum. 6 days ago

Hi Phillip;

Great information. Thanks for getting back on the Forum to update this thread.

Yes please send fuel dipstick information for your 175 taildragger.



STEVE ELLS replied to the topic 'Are P, Q and Rs really off road capable?' in the forum. 6 days ago

Hi Bill;
The higher MTOW of the later models does not mean those have a greater useful load than the earlier flat gear models.

As Cessna continued to load the 182 models with more and more amenities the MTOW had to be increased to continue to provide at least as much useful load as the earlier, lighter airplanes.

Check out the EW on a 1966 182J (1621) compared to a '79 182Q (1754)

I owned a 1966 182J for a while. It fit my mission because it had the long range tanks (I believe it held 84 gallons of fuel), and was easy to fly.

I suggest you look for a clean no corrosion flat spring gear airplane if you can find one.
I say corrosion free because unfortunately Cessna did not apply any type of corrosion proofing to any of its singles prior to re starting production in 1996. A few float planes had zinc chromate sprayed on the interiors by special order but it was not common.

In my opinion, a corrosion free airframe 182 will be the "rate-determining" step.

The early 182s were the best performers but were limited by limited fuel (65 gallons) It was upped to an optional 84 gallons in 1962, with the major fuselage redesign.

The 71 has an increased MTOW to 2950 (all from '62 on were 2800). The tubular gear started in '72.

Keep in touch,



William Schwab replied to the topic 'Are P, Q and Rs really off road capable?' in the forum. 1 week ago

Thanks Steve,
I have read that article many times, it is sort of an inspiration for me.
That said, most of the back country planes I have seen and have read about have been earlier models with flat spring steel gear. I'm interested in a later model with the round tube main gear.
Of course, I may be over thinking the whole issue due to the fact that the highest Gross Weight model have the round tube main gear. Probably be alright!

Enjoy yourself down under.


STEVE ELLS replied to the topic 'Are P, Q and Rs really off road capable?' in the forum. 1 week ago

Hi William;
I suggest you read this article: .

It will provide some answers.

Unfortunately that's all the information I can provide right now to your question. I'm in New Zealand on vacation'

Call or contact Hitchcock Aviation for the answer.




Phillip Walker replied to the topic 'fuel level indicator for 1962 Cessna 175C' in the forum. 1 week ago

Hi all

Noted that this thread is long dated but for reference attached is the measurements in metric for a C175A.

The plane has since been converted to taildragger, let me know if you need the measurements for that.




William Schwab created a new topic ' Are P, Q and Rs really off road capable?' in the forum. 2 weeks ago

Hi all,
I'm in the preliminary stages of looking to upgrade from a Beech Sundowner to a 182. With that said, I do want to do some grass strip, off airport flying. I don't think gravel sand bars or rock strewn wagon trails are in my future tho.
So my question is, are the later P, Q and R models with the tube gear legs really OK for operations on turf? Or do I NEED to go hard core spring steel gear N model and earlier?
I already have the rest of the recipe figured out, just not sure where to start.

Many thanks.


STEVE ELLS replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

Thanks for weighing in with this advice.
I'm presently in NZ for the next three weeks and not always able to answer in a timely fashion.


TOM BRAEUNIG replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

There are a couple of wing inspection panels on the underside of the wing near the top of the lift strut. You'd need to pull one of those panels to access the scoop assembly. You'll have to pull the plastic fairing at the top of the strut to get those panels off. That would mean removing the Tie-Down ring and sliding the plastic fairing down the strut far enough to get the inspection panel off.

Those 4 plate adjustment screws have nuts on the back side, so you'd have to get into the wing anyway just to tighten them.


David Kagey replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

Curious, have you ever taken this apart? I’m kinda worried that if I remove the four plate adjustment screws to check out the felt pad, it will all fall down into the wing interior
Working with my A&P on this. He seems stumped too


TOM BRAEUNIG replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

It will definitely be worth a try. I might first try just tightening the 4 screws on the wing leading edge. That could possibly compress that seal enough to solve the problem.


David Kagey replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

Thanks Steve. Annual coming up and decided to address it then. Everything will be opened up and easier
Appreciate all the help. I’m going to print it all out and give it to the shop


STEVE ELLS replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

Hi Tom;
I believe you will be able to replace that little piece of felt with out too much effort.
If you know what I mean.


TOM BRAEUNIG replied to the topic 'Stall warning horn' in the forum. 2 weeks ago

Well, I looked at the Textron website for the scoop assembly, P/N 0413028-10, and it has the felt seal attached to it. So the only way to get that seal is to order the $451 scoop.

I'm going to look at my stall warning scoop and see if that seal is worn out or damaged, and if so, can it be replaced with either felt or closed cell foam.

Even though my stall horn works in flight, It is pretty anemic sounding, and that seal looks like a good candidate for a place where air could leak.


STEVE ELLS replied to the topic 'G5 Magnetometer IGRF' in the forum. 2 weeks ago

Hi Reid;
I found the following on another site. It appears as though the G5 will require a software update by a Garmin dealer.

Posted January 3

latest firmware update for G5 - a Garmin shop can update…

must do both if you have 2 G5s…